A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys

نویسندگان

  • Jichao Li
  • Hugo F. Lopez
چکیده

The heterogeneous structure of Al alloys renders them susceptible to localized corrosion due to the different electrochemical properties existing in the Al-rich solid solution matrix and secondary phase particles. The galvanic interactions between these two phases can result in pit formation either through dissolution of the particles or corrosion of the matrix adjacent to the particles. This detrimentally localized corrosion behavior is closely related to the corrosion properties of the particles and the Al-rich matrix. The comprehensive characterization of this behavior under various and varying conditions is critical to understanding the mechanism of pit formation, selecting appropriate inhibitors, and developing protection strategies. The corrosion properties (corrosion potential, pitting potential and corrosion rate) of both secondary phase particles and Al-solid solutions in Al alloys are summarized in this review, aiming to provide a database for corrosion research applicable to the localized corrosion of Al alloys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrosion Behavior of Novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys in NaCl Aqueous Solution

Corrosion behavior of two multiphase Mg-Li-Al-based alloys in 0.6 M NaCl aqueous solution is investigated by hydrogen gas evolution measurement and electrochemical test. This paper reports, for the first time, the comparison of hydrogen evolution and Tafel extrapolation results of Mg-Li-Al-based alloys. The corrosion rate of Mg-9Li-7Al-1Sn is observed to be reasonably higher when compared to th...

متن کامل

The Effect of Substrate Temperature and Biasing on Physical-Properties and Corrosion Resistance of CrN/Al 5083 Coatings

Aluminum alloys such as Al 5083 have primary potential for lightweight structural application in automotive and aerospace industries. This paper addresses the mechanical and tribological properties and corrosion resistance of chromium nitride coatings deposited on Al 5083 that can be used for development of applications of aluminum 5083 alloy. The CrN coatings of 1 μm thickness were deposited b...

متن کامل

The Effect of Substrate Temperature and Biasing on Physical-Properties and Corrosion Resistance of CrN/Al 5083 Coatings

Aluminum alloys such as Al 5083 have primary potential for lightweight structural application in automotive and aerospace industries. This paper addresses the mechanical and tribological properties and corrosion resistance of chromium nitride coatings deposited on Al 5083 that can be used for development of applications of aluminum 5083 alloy. The CrN coatings of 1 μm thickness were deposited b...

متن کامل

CORROSION RESISTANT SOL–GEL COATING ON 2024-T3 ALUMINUM

The inherent reactivity of the Al–Cu alloys is such that their use for structural, marine, and aerospace components and structures would not be possible without prior application of a corrosion resistance system. Historically these corrosion resistance coatings were based on the use of chemicals containing Cr (VI) compounds. Silane coatings are of increasing interest in industry due to th...

متن کامل

Phase Transformations in Diluted Al-Sc-based Alloys and Their Investigation

Al-based alloys have a long tradition of use especially as a lightweight material for traffic systems. The limits of conventional casting have not yet been reached. One of the recent aims in the research of Al-based alloys is to realize the potential of non-traditional alloying elements such as transitions metals (TM) – e.g. Sc, Zr, Mn, Cr, etc. and their combinations. In this contribution we d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017